袁兢

副教授
通信地址:清华大学水利水电工程系水力学研究所
邮编:100084
E-mail:yuanj2021@mail.tsinghua.edu.cn

个人主页
教育背景

2008.9-2013.9 麻省理工学院 土木与环境工程系 博士学位

2004.8-2008.7 清华大学 水利水电工程系 学士学位

工作履历

2021-至今 清华大学 水利水电工程系 副教授

2013.9-2021.9 新加坡国立大学 土木与环境工程系 助理教授

开设课程

海岸工程 (英语)

流体力学

海洋工程实习

研究领域

· 近岸边界层流体力学与泥沙运动

· 波浪-海岸防护结构物相互作用

· 漂浮式新能源装置的水动力问题

· 海上风电基础冲刷与防治技术

科研项目

Ø 重点研发计划(国际合作):新型漂浮式潮流-波浪能联合发电装备关键技术及应用,在研,任务牵头, 106万元(任务二总经费473万元),

Ø 企业委托:伊敏露天矿 3500 万吨/年生产系统完善项目三采区水文、工程地质专题研究,在研,主持, 852万元

Ø 企业委托:基于CFD的浮式风机一体化仿真技术研究,在研,参与,75/150万元

Ø 企业委托:生物礁模型研制及水动力特性与防冲刷效果水槽试验服务,结题,主持, 48.5万元

Ø Risk assessment and mitigation for seawall wave overtopping in the context of climate change (主持人, S$ 627,200, Building and Construction Authority, 2018.4-2021.8)

Ø Full-scale experimental study of sediment transport by oscillatory flows and currents (主持人, S$ 180,000, Singapore-MIT Alliance for Research and Technology, 2015.4-2017.3, 已结题)

Ø Sheet-flow sediment transport in the coastal environment (主持人, S$ 150,000, Ministry of Education, Tier-1, 2015.3-2018.8, 已结题)

Ø Sediment transport rates in combined wave-current flows (主持人, S$ 167,417, Singapore-MIT Alliance for Research and Technology, 2013.9-2015.3, 已结题)

Ø Turbulent bottom boundary layers under random waves (主持人, S$179,900, Ministry of Education, NUS faculty member start-up fund, 2013.10-2016.10, 已结题)

Ø Eco-engineering Singapore’s seawalls for enhancing biodiversity (参与者, S$ 819,318.38, National Research Foundation, MSRDP program, 2016.10-2021.4)

Ø On sediment transport in wave-current benthic boundary layer (参与者, S$ 755,376, Ministry of Education, Tier-2, 2019.5-2022.5)

学术兼职

编委:Applied Ocean Research (2021- )

编委:Engineering Applications of Computational Fluid Mechanics (2022- )

编委:International Journal of Coastal and Ocean Engineering (2019- )

理事:Member of the international steeling committee of the International Conference on Asian and PAcific Coasts (APAC) (2019-present)

奖励与荣誉

清华大学第十一届青年教师教学大赛,一等奖,2024

学术成果

学术期刊:

corresponding author*, Supervised PhD. Student, Supervised Post-doc fellow

1. Yuan, J.* and O.S. Madsen (2014), Experimental study of turbulent oscillatory boundary layers in an oscillating water tunnel. Coastal Engineering. 89: p. 63-84 doi: http://dx.doi.org/10.1016/j.coastaleng.2014.03.007.

2. Yuan, J.* and O.S. Madsen (2015), Experimental and theoretical study of wave–current turbulent boundary layers. Journal of Fluid Mechanics. 765: p. 480-523 doi: https://doi.org/10.1017/jfm.2014.746.

3. Yuan, J.*, Turbulent boundary layers under irregular waves and currents: experiments and the equivalent-wave concept (2016). Journal of Geophysical Research: Oceans. 121(4): p. 2616-2640 doi: 10.1002/2015JC011551.

4. Yuan, J.* and S.M. Dash (2017), Experimental investigation of turbulent wave boundary layers under irregular coastal waves. Coastal Engineering. 128: p. 22-36 doi: https://doi.org/10.1016/j.coastaleng.2017.07.005.

5. Yuan, J.*, Z. Li, and O.S. Madsen (2017), Bottom-slope-induced net sheet-flow sediment transport rate under sinusoidal oscillatory flows. Journal of Geophysical Research: Oceans. 122(1): p. 236-263 doi: 10.1002/2016JC011996.

6. Yuan, J.* and W. Tan (2018), Modeling net sheet-flow sediment transport rate under skewed and asymmetric oscillatory flows over a sloping bed. Coastal Engineering. 136: p. 65-80 doi: https://doi.org/10.1016/j.coastaleng.2018.02.004.

7. Yuan, J.* and D. Wang (2018), Experimental investigation of total bottom shear stress for oscillatory flows over sand ripples. Journal of Geophysical Research: Oceans. 123(9): p. 6481-6502 doi:10.1029/2018JC013953.

8. Wang, D. and J. Yuan* (2018), Bottom‐slope‐induced net sediment transport rate under oscillatory flows in the rippled‐bed regime. Journal of Geophysical Research: Oceans, 123, 7308–7331. doi:10.1029/2018JC013810.

9. Önder, A. and J. Yuan (2019), Turbulent dynamics of sinusoidal oscillatory flow over a wavy bottom. Journal of Fluid Mechanics, 858, 264-314. doi:10.1017/jfm.2018.754

10. Zhao, K., J. Yuan*, et al. (2019), Modelling surface temperature of granite seawalls in Singapore, Case Studies in Thermal Engineering 13: 100395.

11. Tan, W., and J. Yuan* (2019), Experimental study of sheet-flow sediment transport under nonlinear oscillatory flow over a sloping bed, Coastal Engineering, 147, 1-11. doi:https://doi.org/10.1016/j.coastaleng.2019.01.002.

12. Wang, D., and J. Yuan* (2019), Geometric characteristics of coarse-sand ripples generated by oscillatory flows: A full-scale experimental study. Coastal Engineering, 147, 159-174. doi:https://doi.org/10.1016/j.coastaleng.2019.02.007.

13. Yuan, J.*, and Wang, D. ( 2019), An experimental investigation of acceleration‐skewed oscillatory flow over vortex ripples. Journal of Geophysical Research: Oceans, 124., https://doi.org/10.1029/2019JC015487

14. Wang, D. and J. Yuan* (2020), Modelling of net sediment transport rate due to wave-driven oscillatory flows over vortex ripples Applied Ocean Research, vol. 94, p. 101979, doi: https://doi.org/10.1016/j.apor.2019.101979.

15. Wang, D. and J. Yuan* (2020), Measurements of net sediment transport rate under asymmetric oscillatory flows over wave-generated sand ripples, Coastal Engineering, vol. 155, p. 103583, doi: https://doi.org/10.1016/j.coastaleng.2019.103583

16. Cao, D., Chen, H*., & Yuan, J. (2021). Inline force on human body due to non-impulsive wave overtopping at a vertical seawall. Ocean Engineering, 219(October 2020), 108300. https://doi.org/10.1016/j.oceaneng.2020.10830

17. Cao, D., Yuan, J.*, Chen, H., Zhao, K., & Li-Fan Liu, P. (2021). Wave overtopping flow striking a human body on the crest of an impermeable sloped seawall. Part I: physical modeling. Coastal Engineering, 167(September 2020), 103891. https://doi.org/10.1016/j.coastaleng.2021.103891

18. Chen, H., Yuan, J*., Cao, D., & Liu, P. (2021). Wave overtopping flow striking a human body on the crest of an impermeable sloped seawall. Part II: Numerical modelling. Coastal Engineering, 103892. https://doi.org/https://doi.org/10.1016/j.coastaleng.2021.103892

19. Tan, W., and Yuan, J* (2021). A two-layer numerical model for coastal sheet-flow sediment transport. Journal of Geophysical Research: Oceans, 126, e2021JC017241.

20. Cao, D., Yuan, J*, & Chen, H. (2021). Towards modelling wave-induced forces on an armour layer unit of rubble mound coastal revetments. Ocean Engineering, 239(May), 109811. https://doi.org/10.1016/j.oceaneng.2021.109811

21. Cao, D., Tan, W., & Yuan, J* (2022). Assessment of wave overtopping risk for pedestrian visiting the crest area of coastal structure. Applied Ocean Research, 120. https://doi.org/10.1016/j.apor.2021.102985

22. Tan, W., Cao, D., & Yuan, J. (2022). Numerical modelling of green-water overtopping flow striking a pedestrian on the crest of a sloped coastal structure. Ocean Engineering, 260. https://doi.org/10.1016/j.oceaneng.2022.112153

23. Tan, W., & Yuan, J* (2022). Net sheet-flow sediment transport rate: Additivity of wave propagation and nonlinear waveshape effects. Continental Shelf Research, 240. https://doi.org/10.1016/j.csr.2022.104724

24. Tan, W., & Yuan, J* (2022). Drag-related wave-current interaction inside a dense submerged aquatic canopy. Journal of Fluid Mechanics, 941. https://doi.org/10.1017/jfm.2022.293

25. Fan, Q., Wang, X., Yuan, J., Liu, X., Hu, H., & Lin, P. (2022). A Review of the Development of Key Technologies for Offshore Wind Power in China. Journal of Marine Science and Engineering, 10(7), 929.

26. Yuan, J* (2023). Observations of net sediment transport rate and boundary layer of wave–current flows over vortex ripples." Coastal Engineering 181: 104288.

27. Dong, Y., & Yuan, J* (2023). Projections of offshore wind energy and wave climate in Guangdong’s nearshore area using CMIP6 simulations. Journal of Intelligent Construction, 1(1), 9180007.

28. Xiang, Y., Lin, P., An, R., Yuan, J., Fan, Q., & Chen, X. (2023). Full participation flat closed-loop safety management method for offshore wind power construction sites. Journal of Intelligent Construction, 1(1), 9180006.

29. Cao, D., Lin, Z., Yuan, J., Tan, W., & Chen, H. (2024). Swash-flow induced forces on human body standing on a smooth and impermeable slope: A numerical study with experimental validations. Engineering Applications of Computational Fluid Mechanics, 18(1), 2319768.

30. Dong, Y., Tan, W.*, Chen, H., & Yuan, J.* (2024). Numerical modeling of wave interaction with a porous floating structure consisting of uniform spheres. Physics of Fluids, 36(8).

31. Wang, X., Yuan, J.*, Qiu, X., Huang, H., Lin, P., Liu, X., & Hu, H. (2024). Time development of live-bed scour around an offshore-wind monopile under large current–wave ratio. Coastal Engineering, 190, 104509.

32. Wei, Z., & Yuan, J. * (2024). A theoretical study of wave-induced response of buried long submarine cables. Ocean Engineering, 314, 119612.

33. Yuan, J. * & Cao, D. (2024). Ripple-averaged wave boundary layer over long-crest sand ripples at high Reynolds number: observations and theoretical model. Applied Ocean Research, vol. 154, p. 104357.

Journal in Chinese (中文期刊)

34. Wang, X, Lin, P., Huang, H., Yuan, J., Qiu, X., Liu, X.(2023). Scour dynamic properties and online monitoring of offshore wind power foundation[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(7): 1087-1094.