胡黎明

职称:教学科研系列长聘教授 博士生导师
通信地址:清华大学水利水电工程系水沙科学与水利水电工程国家重点实验室A207
邮编: 100084
电话号码:+86-10-62797416
E-mail:gehu@tsinghua.edu.cn

教育背景

1995.9—2000.5 清华大学水利水电工程系岩土工程专业,工学博士
1995.9—1997.7 清华大学水利水电工程系岩土工程专业,工学硕士
1993.9—1995.7 清华大学环境工程系环境工程专业,工学学士
1990.9—1995.7 清华大学水利水电工程系水工建筑专业,工学学士

           


工作履历

2017.12—至今 清华大学水利水电工程系,教学科研系列长聘教授,博士生导师
2002.04—2017.11 清华大学水利水电工程系,讲师,副教授,博士生导师
2000.07—2002.04 香港科技大学土木工程系,博士后
1999.07—2000.07 清华大学水利水电工程系,讲师



研究领域

土力学与环境岩土工程:主要包括多孔介质渗流力学;污染场地原位修复;近海与海洋岩土工程;土工建筑物与基础工程。



科研项目

国家自然科学基金

国家自然科学基金面上项目(51979144), 岩土材料孔隙结构模型及渗流微观机理研究, 2020/01-2023/12

国家自然科学基金委员会与香港研究资助局联合科研基金NSFC-RGC (51661165015), 地下系统中砷负载零价铁纳米颗粒的环境行为, 2017/01-2020/12

国家自然科学基金面上项目(51579132), 软土电渗固结机理与模型, 2016/01-2019/12

国家自然科学基金专项基金(51323014), 土壤地下水污染过程与原位修复, 2014.01-2017.12

国家自然科学基金面上项目(41372352), 污染场地地下水曝气修复微观机理研究, 2014.01-2017.12

国家自然科学基金海外及港澳学者合作研究基金项目(51128901) , 饱和与非饱和粘性土颗粒间粘结应力的纳米力学和物理机制的探讨, 2012.01-2013.12

国家自然科学基金面上项目(50978139), 软土地基的电渗固结理论研究与模型试验, 2010.01-2012.12

国家自然科学基金面上项目 (50879038), 土壤地下水曝气修复技术的理论分析与物理模型试验, 2009.01-2011.12

国家自然科学基金青年科学基金项目(50209006) , 不溶性有机污染物在非饱和土体中迁移的离心试验研究, 2003.01-2005.12


国家科技计划

国家重点研发计划课题(2020YFC18015402), 有机复合污染场地强化高效多技术协同修复体系, 2020.07-2023.12

国家重点研发计划课题(2017YFC0403501), 非常规水资源适度性开发利用评价理论和方法, 2017.07-2020.12

国家重点基础研究发展计划(973)课题(2012CB719804), 填埋场渗沥液污染地下环境及防污屏障, 2012.01-2016.12


科技部、教育部、北京市科技计划

教育部自主科研计划重点基础研究专项,2015THZ-02-2, 多孔介质多相渗流微观机理与工程应用, 2016/01-2018/12

教育部自主科研计划交叉专项,2015THZ-01, 低活性且污染性工业废渣的高效利用基础研究, 2016/01-2018/12

科技部国家重点实验室仪器设备专项, 环境岩土工程实验室建设, 2015/01-2017/12

科技部国家重点实验室课题(SKLHSE- 2012-KY-01) , 污染地下水修复过程的模型试验和数值模拟, 2012.01-2013.12

教育部自主科研计划(2010THZ02-1) , 岩土类材料电渗排水基础理论和应用研究, 2010.07-2012.12

北京市科技计划项目北京市地下水资源安全评价及污染防控技术研究与示范” (D07050601 510000)-子题, 储油设施渗漏对地下水水质影响及修复技术研究, 2008.10-2011.12

教育部科学技术研究重点项目(109006), 电渗固结模型试验与数值模拟, 2009.01-2011.06

科技部国家重点实验室课题(SKLHSE- 2008-KY-B3), 地下水研究平台建设, 2008.01-2009.12

清华大学基础研究基金项目(JCqn2005008), 污染土壤修复技术的离心试验研究和数值模拟, 2005.10-2007.10

清华大学青年基金, 土壤有机污染及其清洁技术的研究, 2002.08-2004.07


国际合作项目

欧盟Erasmus+项目, 清华大学-欧盟Erasmus+国际合作与交流项目(土木工程学科), 2016-

2021

欧盟国际合作项目(EU Asia-Link  CN010 94-556), 亚洲联系-环境岩土工程学术交流与科研合作, 2005.01-2007.12


学术兼职

中国大坝工程学会灰坝工程专业委员会 副主任委员

中国土木工程学会土力学及岩土工程分会  常务理事,环境土工专业委员会副主任委员
中国岩石力学与工程学会环境岩土工程分会 常务理事、土壤污染与修复技术委员会主任委员
国际土力学及岩土工程学会(ISSMGE) 环境岩土工程专业委员会(TC215)委员

美国土木工程师学会(ASCE) 会员
国际计算岩土力学学会(IACMAG) 会员
岩土工程学报,编委

Geomechanics and Engineering, Techno Press,编委

Journal of Environmental Engineering and Science, ICE, 编委

渗流力学进展,编委


奖励与荣誉

2020 国家百千万人才工程“有突出贡献中青年专家”

2018 国家科技进步一等奖-创新团队奖(清华大学工程结构创新团队,排名7/14)

2018 澳大利亚政府奋进奖(Endeavour Award)

2017 国际计算岩土力学学会(IACMAG)杰出地区贡献

2017 茅以升科学技术奖-土力学及岩土工程青年奖

2014 湖北省科技进步二等奖(土壤地下水污染修复与固废处理的环境岩土工程技术及应用,排名1/10)

2014 清华大学学术新人

2014 北京水务科学技术二等奖(储油设施渗漏对地下水水质影响及修复技术研究,排名3/10)

2013 国家技术发明奖一等奖(大型结构与土体接触面力学试验系统研制及应用,排名3/6)

2012 ASCE-EWRI Best Theoretical-Oriented Paper Award (美国土木工程师学会环境与水资源分会理论类最佳论文奖)

2012 中国岩石力学与工程学会青年科技奖

2007 教育部新世纪优秀人才

2007 天津市自然科学奖三等奖(复杂地基-结构系统波动与动力学问题的研究,排名4/5)

2005 北京市科技新星


2017 北京市高等教育教学成果一等

2015 清华大学先进工作者

2010 清华大学先进工作者

2008年 清华大学教学成果一等奖

2006年 清华大学教学成果一等奖
2006年 国家级精品课

2004年 清华大学班级主任工作优秀奖 一等奖
2004年 北京市精品课


学术成果

学术论文:

1. Wu Z, Chen Z, Hu L, Wang R, Zhang X. Effect of conditioning schemes on mechanical properties of EPB shield soil. Transportation Geotechnics, 2023, 42:101058

2. Wu Y, Wang Y, Hu L. A theoretical model of the soil freezing characteristic curve for saline soil[J]. Journal of Hydrology, 2023, 622: 129639.

3. Wang Y, Hu L. Evaluation of the BET and GAB models for interpretation of soil water isotherms: A molecular simulation study[J]. Computers and Geotechnics, 2023, 159: 105454.

4. Wu Y, Wang Y, Hu L. A theoretical model of the soil freezing characteristic curve for saline soil[J]. Journal of Hydrology, 2023, 622: 129639.

5. Chen Z, Wang Y, Hu L. Thermal desorption mechanism of n-dodecane on unsaturated clay: Experimental study and molecular dynamics simulation[J]. Environmental Pollution, 2023, 323: 121228.

6. Wang Y, Chen Z, Hu L. Determining the geometric surface area of mesoporous materials[J]. The Journal of Physical Chemistry C, 2023, 127(9): 4799-4807.

7. Lin D, Zhang D, Zhang X, et al. Prediction of gas production rate from shale gas reservoirs using a micro–macro analysis[J]. Scientific Reports, 2023, 13(1): 494.

8. Lin D, Hu L, Lo I M C. Two-Dimensional Modeling of Nano Zero-Valent Iron Transport and Retention before and after Phosphate Adsorption[J]. Environmental Science & Technology, 2022, 56(24): 17712-17719.

9. Wang Y, Hu L, Luo S, et al. Soil water isotherm model for particle surface sorption and interlamellar sorption[J]. Vadose Zone Journal, 2022, 21(5): e20221.

10. Lin D, Zhang X, Hu L*, et al. Prediction of colloid sticking efficiency at pore-scale and macroscale using a pore network model[J]. Journal of Hydrology, 2022: 128253

11. Zhang L, Hu L*. Effect of anode condition on electro-osmotic consolidation combined with vacuum preloading[J]. Drying Technology, 2022, 40(9): 1856-1865

12. Zhang L, Hu L*. Numerical simulation of electro-osmotic consolidation considering tempo-spatial variation of soil pH and soil parameters[J]. Computers and Geotechnics. 2022, 147: 104802

13. Lin D, Hu L*, Bradford S A, et al. Prediction of collector contact efficiency for colloid transport in porous media using Pore-Network and Neural-Network models[J]. Separation and Purification Technology, 2022, 290: 120846

14. Zhang P, Liu B, Hu L, et al. Coupled multiphase flow and pore compression computational model for extraction of offshore gas hydrates[J]. Computers and Geotechnics, 2022, 145: 104671

15. Du J, Luo S, Hu L, et al. Multiscale mechanical properties of shales: grid nanoindentation and statistical analytics[J]. Acta Geotechnica, 2022, 17(2): 339-354

16. Chen Z, Hu L. Adsorption of Naphthalene on Clay Minerals: A Molecular Dynamics Simulation Study[J]. Materials, 2022, 15(15): 5120.

17. Lin D, Hu L, Bradford S A, et al. Pore-network modeling of colloid transport and retention considering surface deposition, hydrodynamic bridging, and straining[J]. Journal of Hydrology, 2021, 603: 127020.

18. Wang Y, Hu L, Zhang C, et al. Liquid Cavitation during Nitrogen Sorption on Soils[J]. Journal of Engineering Mechanics, 2021, 147(11): 04021099

19. Wang Y J, Hu L, Zhang C, Luo S, Lu N. Liquid Cavitation during Nitrogen Sorption on Soils. ASCE Journal of Engineering Mechanics, 2021, 147(11): 04021099.

20. Lin D, Hu L, Bradford S A, Zhang X, Lo IMC. Pore-network modeling of colloid transport and retention considering surface deposition, hydrodynamic bridging, and straining. Journal of Hydrology, 2021, 603: 127020.

21. Zhang D, Meegoda J N, da Silva B M G, Hu L. Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling. Scientific Reports, 2021, 11(1): 20049.

22. Du J, Luo S, Hu L, Guo B, Guo D, Zhang G. Multiscale mechanical properties of shales: grid nanoindentation and statistical analytics. Acta Geotechnica, 2021: 1-16.

23. Du J, Whittle A J, Hu L, Divoux T, Meegoda J. Characterization of meso-scale mechanical properties of Longmaxi shale using grid microindentation experiments. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(3): 555-567.

24. Zhang D, Zhang X, Guo H, Lin D, Meegoda J, Hu L. An anisotropic pore-network model to estimate the shale gas permeability. Scientific Reports, 2021, 11(1): 7902.

25. Lin D, Bradford S, Hu L, Lo I M C. Impact of phosphate adsorption on the mobility of PANIsupported nano zerovalent iron. Vadose Zone Journal, 2021, 20(2): e20091.

26. Zhang L, Hu L. Effect of anode condition on electro-osmotic consolidation combined with vacuum preloading. Drying Technology, 2021: 1-13.

27. Lin D, Hu L, Bradford S A, Zhang X, Lo I M C. Simulation of colloid transport and retention using a porenetwork model with roughness and chemical heterogeneity on pore surfaces. Water Resources Research, 2021, 57(2): e2020WR028571, 1-18.

28. Du J, Whittle A J, Hu L, et al. Characterization of meso-scale mechanical properties of Longmaxi shale using grid microindentation experiments[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021.

29. Liu M, Hu L*. Journal of Energy Resources Technology. Integrated Similarity Criteria of Particle Erosion in Elbows Under Gas and Gas-Mist Flow Conditions, 2021, 143(6).

30. Zhang P, Celia M A, Bandilla K W, Hu L*, Meegoda J N. A Pore-Network Simulation Model of Dynamic CO2 Migration in Organic-Rich Shale Formations. Transport in Porous Media, 2020,133: 479–496.

31. Zhang R, Quan W, Fan F, Hu L, Yan D. Distinguishing Computer-Generated Images from Natural Images Using Channel and Pixel Correlation. Journal of Computer Science and Technology, 2020, 35(3): 592–602.

32. Lin, Dantong; Hu, Liming*; Lo, Irene M. C.; Yu, Zhigang. Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength. Water, 2020, 12(10): 2939.

33. Liu M, Hu L*. A numerical procedure for estimating the sand erosion of elbows in annular flow with the complete thickness distribution of the liquid film. Wear, 2019, 440–441: 203085

34. Koshy N, Dondrob K, Hu L*, Wen Q, Meegoda J N. Mechanical Properties of Geopolymers Synthesized from Fly Ash and Red Mud under Ambient Conditions. Crystals, 2019, 9(11): 572.

35. Xia, Z., & Hu, L. (2019). Theoretical Model for Mass Transfer Processes of Oxygen and Ozone Micro-Nano-Bubbles During Contaminant Treatment. ASCE Journal of Environmental Engineering and Science, 14(3): 157–167.

36. Hu L*, Zhang L, Wu H. Experimental study of the effects of soil pH and ionic species on the electro-osmotic consolidation of kaolin. Journal of Hazardous Materials. 2019. 368: 885-893.

37. Nevin Koshy, Kunga Dondrob, Liming Hu*, Qingbo Wen, Jay N. Meegoda. Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Construction & Building Materials, 2019. 206: 287–296.

38. Zhang L, Hu L*. Laboratory tests of electro-osmotic consolidation combined with vacuum preloading on kaolinite using electrokinetic geosynthetics. Geotextiles and Geomembranes, 2019, 47: 166-176.

39. Xia Z, Hu L*. Treatment of Organics Contaminated Wastewater by Ozone Micro-Nano-Bubbles. Water 2019, 11, 55.

40. Yu, Zhigang; Hu, Liming; Lo, Irene M. C. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading. CHEMOSPHERE. 2019, 216: 428-436.

41. Yu, Zhigang; Huang, Junyi; Hu, Liming; Zhang, Weilan; Lo, Irene M. C. Effects of geochemical conditions, surface modification, and arsenic (As) loadings on As release from As-loaded nano zero-valent iron in simulated groundwater. Environmental Science-Water Research & Technology, 2019, 5(1): 28-38.

42. Du J, Hu L*, Meegoda JN, Zhang G*. Shale softening: Observations, phenomenological behavior, and mechanisms. Applied Clay Science, 2018, 161: 290–300.

43. Wu H, Hu L*, Wen Q. Numerical assessment of equivalent radius for electro-kinetic geosynthetics electrodes during electro-osmotic consolidation. International Journal of Geomechanics, ASCE. 2018, 18(5): 04018024.

44. Zhang, Weilan; Lo, Irene M. C.*; Hu, Liming; Voon, Chia Pao; Lim, Boon Leong; Versaw, Wayne K. Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP(2-) in Arabidopsis thaliana. Environmental Science & Technology, 2018, 52(7): 4385-4392.

45. Hui Wu; Qingbo Wen; Liming Hu*; Meng Gong. Effect of adsorbate concentration to adsorbent dosage ratio on the sorption of heavy metals on soils. Journal of Environmental Engineering, ASCE. 2018, 144(2): 04017094.

46. Hu L*, Xia Z. Application of Ozone Micro-Nano-Bubbles to Groundwater Remediation. Journal of Hazardous Materials. 2018, 342: 446-453.

47. Wu H, Hu L*, Wen Q. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters. Computers & Geosciences, 2017, 103: 92-98.

48. Wu H, Wen Q, Hu L*, et al. Feasibility study on the application of coal gangue as landfill liner material. Waste Management, 2017, 29: 161-171.

49. Wu H, Hu L*. Electro-osmotic Consolidation of Soil with Variable Compressibility, Hydraulic Conductivity and Electro-Osmosis Conductivity. Computers and Geotechnics, 2017, 85: 126-138.

50. Wu H, Hu L*, Qi W, Wen Q. Analytical Solution for Electroosmotic Consolidation Considering Nonlinear Variation of Soil Parameters[J]. International Journal of Geomechanics, ASCE, 2017, 17(5): 06016032.

51. Zhang P, Hu L*, Meegoda J N. Pore-scale simulation and sensitivity analysis of apparent gas permeability in shale matrix. Materials, 2017, 10(2): 104.

52. Hu L*, Wu H&, Zhang L&, et al. Geotechnical Properties of Mine Tailings. ASCE Journal of Materials in Civil Engineering, 2017: 29(2): 04016220.

53. Xiaoling Tan; Fengyin Liu; Liming Hu; Allen H Reed; Yoko Furukawa; Guoping Zhang. Evaluation of the particle sizes of four clay minerals[J]. Applied Clay Science. 2017, 135: 313-324.

54. Wu H, Hu L*, Zhang G. Effects of Electro-Osmosis on the Physical and Chemical Properties of Bentonite. ASCE Journal of Materials in Civil Engineering, 2016, 28(8): 06016010.

55. Xu WJ, Hu LM, Gao W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam. International Journal of Rock Mechanics and Mining Sciences, 2016, 86, 166-178.

56. Wu H, Hu L*, Zhang L, Wen Q. Transport and Exchange Behavior of Ions in Bentonite During Electro-Osmotic Consolidation. Clays and Clay Minerals, 2015, 63(5): 395-403.

57. Zhang P, Hu L*, Wen Q, et al. A multi-flow regimes model for simulating gas transport in shale matrix. Géotechnique Letters, 2015: 231-235.

58. Wu H, Hu L*, Wen Q. Electro-osmotic enhancement of bentonite with reactive and inert electrodes. Applied Clay Science, 2015, 111: 76-82.

59. Zhang P, Hu* L, Meegoda J & Gao S. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix. Nature Publishing Group: Scientific Reports, 2015, 5: 13501. DOI: 10.1038/srep13501.

60. Hu L*, Meegoda J, Li H, et al. Study of flow transitions during air sparging using the geotechnical centrifuge. ASCE Journal of Environmental Engineering, 2015, 141(1): 04014048. 10.1061/(ASCE)EE.1943-7870.0000877.

61. Liu T, Hu L*. (2014). Organic acid transport through a partially saturated liner system beneath a landfill. Geotextiles and Geomembranes 42(5): 428-436.

62. Wu H, Hu L*. Microfabric change of electro-osmotic stabilized bentonite. Applied Clay Science, 2014, 101: 503-509.

63. Pasha AY, Hu L*, Meegoda JN. Numerical simulations of a light nonaqueous phase liquid (LNAPL) movement in variably saturated soils with capillary hysteresis. Canadian Geotechnical Journal, 2014, 51: 1046-1062.

64. Li H, Hu L*, Song D, Lin F. Characteristics of Micro-nano Bubbles and Potential Application in Groundwater Bioremediation. Water Environment Research, 2014, 86(9): 844-851.  

65. Hu L*, Wu H. Mathematical model of electro-osmotic consolidation for soft ground improvement. Geotechnique. 2014, 64(2): 155-164.

66. Li H, Hu L*, Song D, Al-Tabbaa A. Subsurface transport behavior of micro-nano bubbles and potential application for groundwater remediation. Int. J. Environ. Res. Public Health, 2014, 11(1), 473-486.

67. Tan X, Hu L., Reed AH, Furukawa Y, Zhang G. Flocculation and particle size analysis of expansive clay sediments affected by biological, chemical, and hydrodynamic factors. Ocean Dynamics, 2014, 64(1), 143-157.

68. Dong WX, Hu L, Yu YZ, Lv H. Comparison between Duncan and Chang’s EB model and the generalized plasticity model in the analysis of a high earth-rockfill dam. Journal of Applied Mathematics, 2013, Article ID 709430, http://dx.doi.org/10.1155/2013/709430.

69. Li HZ, Hu LM*, Xia ZR. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles. Materials, 2013, 6, 3676-3687.

70. Gao SY, Meegoda JN, Hu LM*. A dynamic two-phase flow model for air sparging. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(12): 1801-1821.

71. Zhang J, Hu LM, Pant R, Yu, Wei, Zhang. Effects of interlayer interactions on the nanoindentation behavior and hardness of 2:1 phyllosilicates. Applied Clay Science, 2013, 80-81: 267-280.

72. Wu H, Hu LM*. Analytical solution for axisymmetric electro-osmotic consolidation. Géotechnique. 2013, 63(12): 1074 -1079.

73. Wu H, Hu L*. Numerical model of soft ground improvement by vertical drain combined with vacuum preloading. Journal of Central South China University, 2013, 20(7): 2066-2071.

74. Liu Xiaoli; Hu Liming; Wang Enzhi; Xue Qiang. Study on Landfill Leachate Plumes with coupled Liquid-Solid Model. Disaster Advances, 2013, 6(7): 51-57.

75. Wu H, Hu LM*. Discussion of "Numerical assessment of equivalent diameter equations for prefabricated vertical drains". Canadian Geotechnical Journal, 2013, 50(7): 801-804.

76. Pasha AY, Hu LM, Meegoda JN, Ebadi T. Back-Calculated Soil–Water Characteristic Curve From Fluid Flow Data. ASTM Geotechnical Testing Journal, 2013, 36(3): 301-309.

77. Pasha AY, Aflaki E, Hu LM*, Meegoda JN. Effect of Soil Fabric on Transport of a LNAPL through Unsaturated Fine Grained Soils: A Centrifugal Model Study. Soil and Sediment Contamination, 2013, 22(2): 223-240.

78. Gao SY, Meegoda JN, Hu LM*. Simulation of Dynamic Two-phase Flow during Multistep Air Sparging, Transport in Porous Media, 2013, 96: 173-193.

79. Gao SY, Meegoda JN, Hu LM*. Two Methods for Pore-Network of Porous Media. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(18): 1954-1970.

80. WU Hui, HU Liming*. Analytical and Numerical Solutions for Vacuum Preloading Considering a Radius Related Strain Distribution. Mechanics Research Communications, Mechanics Research Communications, 2012, 44: 9-14.

81. Hu L*, Wu W, Wu H. Numerical model of electro-osmosis consolidation in clay. Géotechnique, 2012, 62(6): 537-541.

82. Pashal AY, Hu LM*, Meegoda J N, Aflaki E, Du J. Centrifuge modeling of in-situ surfactant enhanced flushing of diesel contaminated soil. ASTM Geotechnical Testing Journal, 2011, 34(6): 623-633.

83. HU Liming*, MEEGODA J, DU Jianting, GAO Shengyan, WU Xiaofeng. Centrifugal Study of Zone of Influence during Air-Sparging. Journal of Environmental Monitoring, RSC, 2011, 13 (9), 2443-2449.

84. Meegoda JN, Hu LM. A Review of Centrifugal Testing of Gasoline Contamination and Remediation. Int. J. Environ. Res. Public Health 2011, 8, 3496-3513.

85. Gao Shengyan, Meegoda J N, Hu Liming*. Microscopic Modeling of Air Migration during Air Sparging. Journal of Hazardous, Toxic, and Radioactive Waste, ASCE, 2011, 15(2): 70-79. [ASCE-EWRI Best Paper Award]

86. Meegoda JN, Gao S, Al-Joulani N, Hu L. Solid waste and ecological issues of coal to energy. Journal of Hazardous, Toxic, and Radioactive Waste, ASCE, 2011, 15(2): 99-107.

87. Hu L*, Wu X, Liu Y, Meegoda JN, Gao S. Physical Modeling of Air Flow during Air Sparging Remediation. Environmental Science and Technology, ACS, 2010, 44(10): 3883-3888.

88. Hu L*, Zhao M, Pu J. Centrifuge modeling of an offshore water-intake project under ice loading. Applied Ocean Research, 2010, 32(1): 49-57.

89. Hu Liming*, Zhang Bingyin, Ma Jie. Mechanical characteristics for interfaces between granular materials. Mechanics Research Communications, 2010, 37(1): 42-46.

90. Hu Liming*, Ding Jinwei, Liu Haixiao. Mechanical Behavior of Marine Clay under Wave Loading. International Journal of Offshore and Polar Engineering. 2010, 20(1): 72-79.

91. Dawson A, Boothroyd P, Ma J and HU Liming. Two-dimensional numerical simulation of groundwater contamination in the highway environment, International Journal of Pavement Engineering, 2009, 10(4): 265-276.

92. Zhang Bingyin, Yu Yuzhen, Fu Jian, HU Liming. Simple Shear Test for Interface between Two Granular Materials, Geotechnical Testing Journal, ASTM, 2008, 31(3): 252-260.

93. Hu Liming*, Lo IMC, Meegoda JN. Numerical analysis and centrifuge modeling on LNAPLs transport in subsurface system. Progress in Natural Science, 2006, 16(4): 416-424.

94. Hu LM, Lo IMC, and Meegoda NJ. Centrifuge Testing of LNAPL Migration and Soil Vapor Extraction for Soil Remediation. Practice Periodical Hazardous, Toxic, and Radioactive Waste Management, ASCE. 2006, 10(1): 33-40.

95. Lo IMC, Hu L. M., and Meegoda, N. J. Feasibility Study of Using Centrifuge for Investigation of LNAPL Migration in Unsaturated Soils. Soil and Sediment Contamination, AHA, 2005, 14(1), 85-103.

96. Lo Irene M. C., Zhang Jianhong, HU Liming. Centrifuge Modeling of Cadmium Migration in Saturated and Unsaturated Soils, Soil and Sediment Contamination, AHA, 2005, 14(5), 417-431.

97. HU Liming*, PU Jialiu. Testing and Modeling of Soil-structure Interface. Journal of geotechnical and geo-environmental Engineering, ASCE, 2004, 130(8): 851-860.

98. Lo IMC, Hu LM. Centrifuge Modeling of LNAPLs Transport In Unsaturated Soils. Journal of Geotechnical and Geo-environmental Engineering, ASCE, 2004, 130(5): 535-539.

99. Lo IMC, Hu LM. Long-term migration of light nonaqueous-phase liquids in two unsaturated soils: Clayey silt and fine sand. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2004, 8(4): 228-237.

100. Lo IMC, Zhang JH, Hu LM, and Shu SZ. Effect of Soil Stress on Cadmium Transport in Saturated Soils. Practice Periodical of Hazardous, Toxic and Radioactive Management, ASCE, 2003, 7(3): 170-176.

101. Hu Liming*, PU Jialiu. Application of Damage Model for Soil-structure Interface, Computers and Geotechnics, 2003, 30(2): 165-183.


发明专利:

弯曲单元量测系统 中国 200710063498.6

基于电渗的土体渗透系数测量方法及装置 中国 201010122680.6

一种室内真空电渗联合固结试验仪 中国 201210006833.X

用微纳米气泡对地下水原位修复的方法及系统 中国 201310020102.5

双向电渗固结仪 中国 201110299860.6

用微纳米气泡对污染地下水强化原位修复的方法及系统 中国 201210041355.6

多孔介质中微纳米气泡观测系统及方法 中国 201310048560.X

水体中微纳米气泡观测系统及方法 中国 201310048458.X

电渗处理膨胀土的方法 中国 201410129568.3

基于高密度电阻率法的水分及溶质迁移量测装置和方法 中国 201510004414.6

基于臭氧微纳米气泡的废水处理系统及方法 中国 201610063091.2

マイクロ/ナノバブルによる地下水を原位置で修復する方法及びシステム  日本発明特許第6010636